
 Flow Semantics in Smart City IoT

© 2016 - Richard Linger and Alan Hevner ISCA 2016

Flow Semantics for Intellectual Control in
Smart City IoT Systems

Richard Linger

Chief Technology Officer
Lenvio Inc.

Manassas, VA
richard.linger@lenvio-inc.com

Alan Hevner

Muma College of Business
University of South Florida

Tampa, FL
ahevner@usf.edu

Abstract: Internet of Things (IoT) systems for Smart Cities will be comprised of massive
numbers of hardware, software, and network components, all sensing, computing,
communicating, and controlling in dynamic architectures and state spaces of extraordinary
complexity. Nodes, connections, and users will come and go, quality and reliability will be
unpredictable, and failures and intrusions will be ever-present. It is vital that these systems
be rigorously designed, developed, and governed; but how can a rigorous engineering
discipline be defined for an environment where the capability, connectivity, and integrity
of components will vary from moment to moment? Current IoT reference architectures
specify system structures, but provide little guidance for the semantic foundations required
to create and verify system functionality, security, and quality attributes. In this paper, we
focus on Flow Semantics as a rigorous engineering foundation for analysis, development,
evolution, operation, and governance of IoT systems in such unpredictable environments.
Flow Semantics are overarching engineering artifacts that exhibit desirable properties for
IoT system development and operation. They are based on scale-free mathematical
foundations of functions and relations, and capitalize on recent advances in automated
computation of software behavior. The goal of this research is to develop engineering
principles and practices for maintaining intellectual control in Smart City IoT systems.

Keywords: Internet of Things, Smart Cities, Reference Architecture, Governance,
Intellectual Control, Flow Semantics, Quality Semantics, Engineering Foundations,
Software Behavior Computation

IoT System Realities

Internet of Things (IoT) systems exhibit unprecedented levels of scale and complexity (Atzori et al. 2010).
These systems are characterized by very-large-scale heterogeneous networks with often unknown and
unknowable boundaries and components. Nodes, connections, configurations, and capabilities come and
go in unpredictable ways, and failures and compromises are ever-present. Dynamic interconnectivity of
systems-of-systems limits visibility and intellectual control of security and functionality. User transaction
flows traverse systems and components of varying quality and reliability. Additional complications arise
from the variety of architectures, platforms, languages, protocols, organizations, and users that will be
involved. Yet IoT systems must provide unprecedented levels of reliability and dependability for effective
Smart City operations (Gil-Castineira et al. 2011; Vlacheas et al. 2013). A critical question is how a rigorous
engineering discipline can be defined for designing, developing, evolving, and operating such massive,
complex, and unpredictable systems.

The burden of un-mastered complexity leads to loss of intellectual control when it exceeds human
capabilities for reasoning and analysis. Intellectual control means understanding IoT system behavior at all
levels in all circumstances of use. It does not mean the absence of uncertainty – that will always be with us
– but rather the capabilities, through engineering and management processes, to deal with it.

The essential role of governance of IoT systems addresses resource facilitation along with organizational
authorities, responsibilities, and accountabilities (Weber 2013). IoT governance requires a clear and
detailed reference architecture as a basis for analyzing, designing, regulating and communicating IoT
activities. Current IoT reference architecture proposals, such as the EU’s Architectural Reference Model
(ARM 2013) and Cisco’s Internet of Things Reference Model (Cisco 2014), provide extensive detail on

mailto:richard.linger@lenvio-inc.com
mailto:ahevner@usf.edu

 Flow Semantics in Smart City IoT

© 2016 - Richard Linger and Alan Hevner ISCA 2016

structural requirements for IoT systems, but say little with respect to requirements for behavioral semantics
of IoT system applications. This is a gap that we attempt to understand and address in this research stream.
Our motivation is simple: without rigorous behavioral semantics as a foundation for IoT applications such
as Smart Cities, attempts to develop and deploy these systems may pose unacceptable risks. To build our
argument, we begin by identifying the semantic deficiencies in current IoT reference architectures. Then
we propose a set of mathematical bases for flow semantics to support an engineering foundation for IoT
governance and application development.

IoT Reference Architectures

An IoT reference architecture provides a common understanding and vocabulary for interoperability and
communication across various platforms in an IoT system. Given a standard reference architecture,
businesses and developers can create compliant IoT solutions for specific application ecosystems, such as
Smart Cities. The complexities and compromises in developing an acceptable IoT reference architecture are
enormous, and we are just beginning to see initial proposals from standards organizations (e.g. ARM 2013)
and industry (e.g. Cisco 2014). We observe that these initial reference architectures have a primary focus
on IoT structures, including:

 Components – Sensors, Computers, Data Repositories, Servers, Platforms, etc.

 Connectors – Networks, Pipes, Telecommunications, etc.

 Configurations – Patterns for components and connectors in well-defined arrangements.

 Protocols – Detailed support for data flows and control flows within and between configurations.

While such architectural details are essential for providing and enforcing the syntactical structures of IoT
systems, there is little attention to the behavioral semantics needed to support engineering of IoT
applications. A recent survey of Smart Cities software architectures finds a great disparity in the range of
requirements considered important for inclusion in the various architecture descriptions (da Silva et al.
2013). They conclude that no current Smart City architecture fulfills all essential requirements for
application development. Further, they identify an overriding focus on technical issues with a significant
gap on human-centered (i.e. social and behavioral) issues of the Smart City applications.

Computational Semantics for IoT Systems

IoT application development requires stable and dependable anchors for specification, design, and
verification in a unified engineering discipline. In addressing this need, we build on our previous research
stream on Flow-Service-Quality (FSQ) technologies, which we adapt here to IoT Smart City applications
(Hevner et al. 2002; Linger et al. 2002; Hevner et al. 2009). We propose three overarching semantic
concepts that contribute to foundations for IoT development. They prescribe both engineering processes
and new forms of computational automation to support them.

Flow Semantics

IoT transactions are composed of flows of control and data through IoT architectural structures (i.e.
components, connectors, and configurations). Methods for creation, instantiation, execution, monitoring,
completion, and deletion of IoT transactions are required for any application domain. User task flows and
their refinements into invocations of other flows and system services can provide a unified engineering
foundation for analysis, specification, design, and verification of required functionality and quality
attributes. Engineering development of task flows can be augmented by computational automation for
behavioral analysis of flows and their components.

Flow Semantics are compositions of components that carry out user tasks to accomplish enterprise
missions. Flows are composed of control and data movement among nodes and communication links in IoT
systems, and may employ other flows in carrying out user tasks. They define and implement business value
for IoT users and sponsors, and can represent the overarching engineering and operational artifacts of IoT
systems. Flows employ special semantic structures that preserve deterministic properties for human
understanding and machine analysis, despite the underlying asynchronous and unpredictable behavior of
IoT systems, as described below.

 Flow Semantics in Smart City IoT

© 2016 - Richard Linger and Alan Hevner ISCA 2016

Quality Semantics

Quality attributes can be associated with flows and the system services they invoke, and are specified as
dynamic mathematical properties to be computed, rather than as a priori predictions of limited value in
real-time operations. Quality Semantics can be dynamically managed in operational use to provide required
levels of availability, quality, and functionality (Walton et al. 2009).

Three semantic quality objectives can be identified. (1) A flow transaction will require minimum levels of
quality to be successfully performed. How do we define the quality requirements of a designed user
transaction on an IoT architecture? (2) As a transaction is instantiated on a particular IoT system at a given
point in time, how can we predict the quality levels that are available? This will depend on the current state
of the IoT system in terms of capacity, load, reliability, and many other system state variables. If the
required levels of quality cannot be currently provided, a decision must be made whether to perform the
transaction or wait until a sufficient level of quality can be obtained in the system. (3) What management
mechanisms are needed in an IoT system to monitor the progress of an executing transaction to ensure that
the quality levels are achieved? If certain qualities are falling short, dynamic flow management may be
required to alter the flow path or abort the transaction and reinitiate it at a later time. In essence, quality
attribute status must be known and dynamically managed in IoT systems for all user flows.

Evolution Semantics

Flow Semantics and Quality Semantics prescribe requirements for IoT architecture semantics focused on
management and governance of user functionality and data in a bounded application domain. In complex
IoT environments, however, it is not possible to completely predict all possible system behaviors. New and
unpredictable behaviors will emerge over time and must be recognized and managed. Also, an IoT
architecture must evolve and adapt over time based on changes in goals, ecosystems, and technologies.
Evolution Semantics will prescribe processes for managing and directing this evolution while maintaining
current operational capabilities.

In the remainder of this paper, we elaborate on application of Flow Semantics to Smart City IoT systems.
Issues of Quality Semantics and Evolution Semantics will be topics for future research.

Foundations for IoT Flow Semantics

The IoT Uncertainty Factors

Given the need for an engineering discipline that can explicitly accommodate development for the
operational variability of IoT systems, it is useful to focus on sources of this variability in what are termed
Uncertainty Factors. These factors capture the unpredictable outcomes of system service uses. For example,
a service may be unavailable, unreliable, incorrect, partial, or compromised, to name a few areas of
uncertainty. In addition, services will typically be operating asynchronously, thereby creating an additional
level of engineering complexity.

Uncertainty Factors are an important concept that helps guide definition of the semantic properties that
IoT components must possess to permit effective operational control. An engineering discipline for IoT
systems must provide systematic means for developers to deal effectively with the Uncertainty Factors in a
particular domain in addition to provision of required functionality, quality, and performance.

The Idea of Flow Semantics

A flow is a traversal of IoT network components to perform a specific task for a user (person or machine)
or another flow. A flow combines functional capabilities of components such sensors, controllers,
computations, protocols, communications, and services, any of which can be operating asynchronously, in
order to complete its specified task. Flows can range from large and complex to small and simple. Flows
can invoke other flows, and can be grouped into flowsets that implement particular mission objectives.

We identify two overarching engineering requirements for flows and their constituent components:

 Flow Semantics in Smart City IoT

© 2016 - Richard Linger and Alan Hevner ISCA 2016

 Flows must be deterministic to permit design and verification under intellectual control despite the
underlying complexity and asynchronism of service uses.

 Flows must provide suitable responses despite the Uncertainty Factors (i.e. robustness) to permit
dependable operational use.

In informal terms, flows and their components must be self-contained in a semantic sense to permit
localized development and verification under intellectual control, yet still embody all uses of external flows
and services required to complete their specified tasks, but whose responses cannot be predicted.

In addition, because of the Uncertainty Factors, an IoT system can serve up absolutely anything to a flow
when it invokes external flows and services. To achieve a self-contained and localized view of a flow for
development while accommodating necessary use of external capabilities, it is necessary that a flow “doesn’t
care” what the system serves up, but will always employ what is served up to carry out its task. If what is
served up is complete and correct, the flow satisfies its nominal specification. If what is served up is
incorrect or incomplete, the flow does not fail, but rather communicates its status for other flows to take
action, and satisfies its specification in this way. That is, both ordinary and extraordinary behaviors, and
everything in between, are defined in its specification. This is a critical property for flows and their
components – it localizes reasoning for development yet permits use of external functionality for task
completion. This property is a cornerstone of Flow Semantics engineering. It prescribes a special semantic
model for development and verification that can be standardized across all flows in an IoT system, as
described here.

The Mathematics of Flow Semantics

The mathematical foundations of Flow Semantics are defined to support development and verification of
flows for uncertain environments as a standard engineering practice. To accommodate the unpredictable
behavior of other flows and services, flow specifications permit only definition of the processing that the
flow itself performs, and not the processing of the services it invokes. To achieve this, Flow Semantics
require definition of appropriate actions by a flow for all possible responses from invoked services, both
desired and undesired. Thus, if the behaviors of invoked services change for any reason, the specification
and verification of the invoking flow need not change.

This approach offers important advantages. It requires for mission completion that the Uncertainty Factors
be explicitly dealt with in flow design. It permits reasoning about flows to be localized yet complete. And it
permits flows to be defined by simple deterministic structures despite the underlying asynchronous
behavior of their constituent services. These deterministic structures can be refined, abstracted, and
verified using straightforward compositional methods for human understanding and intellectual control.

These IoT objectives require extension of the traditional functional semantics model of programming. That
model is based on denotational semantics (Stoy 1977) and the well-known concept of programs as rules for
mathematical functions or relations, that is, mappings form domains to ranges, or stimuli to responses, as
specified by transition functions (Linger et al. 1979).

Briefly, the principal extension required to ensure that flows are deterministic and deal with the Uncertainty
Factors is to make the histories of service invocations themselves part of the specified behavior of their
using flows. This is achieved by including the invocation stimulus history (ISH) of every service in the range
(responses) of the function that represents the specification of a flow. Because subsequent flow processing
can depend on the responses from these invocations, the invocation response history (IRH) must be part of
the domain (stimuli) of the mathematical function that represents the specification of a flow. This extension
is labeled Response-Based Semantics (RBS), as illustrated in Figure 1.

The transition function is thus f: (S x IRH) (R x ISH). This counterintuitive inclusion of service responses
in the domain of a flow and service stimuli in the range allows flows to deal with the Uncertainty Factors.
IRH represents the range of possible service responses, and thus embodies the Uncertainty Factor
possibilities that must be accommodated in flow design. This requires designing for all possible responses
that external flow and service invocations can produce, including missing, incorrect, or partial responses,
to name a few. Additional information on this semantic model can be found in (Hevner et al. 2009). The
model is characterized by theorems that inform engineering practices in its application, including the flow

 Flow Semantics in Smart City IoT

© 2016 - Richard Linger and Alan Hevner ISCA 2016

structure theorem, abstraction/refinement theorem, flow implementation theorem, and flow verification
theorem.

Figure 1. Response-Based Semantics

This approach to specification is important for maintaining intellectual control. Deterministic flows that
invoke non-deterministic services can be specified by deterministic mathematical functions, making human
reasoning and analysis much simpler. These methods differ from conventional functional semantics that
require that a specification of a flow must include the full functional effects of all external flow and service
invocations. The key point is that Response-Based Semantics localize the design and verification of a given
flow, independent of other flows and service uses, and permit full accommodation of the Uncertainty
Factors. The ability to superimpose a deterministic flow on an asynchronous IoT network and effectively
deal with the Uncertainty Factors facilitates human reasoning and control.

Figure 2. IoT Flow Illustration

IoT Flow Engineering

Flows are defined by specifications based on mission objectives. Specifications are refined into function-
equivalent, architecture-independent user task flows of components and data, then into compositions of
function-equivalent, architecture-dependent components and data in a stepwise process. At each step,
designs are expressed as compositions of single-entry, single-exit control structures, including sequence,
alternation, and iteration, and their variants. Local sub-specifications are defined and documented with

IoT Flow Component

External Flow

Stimulus (S) Response (R)

Invocation
Response

History (IRH)

Invocation
Stimulus

History (ISH)

IoT network architecture

flow 3

flow 1

flow 2

mission
task 1

mission
task 2

mission
task 3

Pervasive
asynchronous
behavior

Flow refinement,
abstraction, and
verification

Response-Based Semantics for flow components
Allows deterministic development and Uncertainty
Factor resiliency

 Flow Semantics in Smart City IoT

© 2016 - Richard Linger and Alan Hevner ISCA 2016

each refinement for use in verification. Components can invoke other flows and system services through
stimulus/response interactions in a hierarchical structure as defined by Response-Based Semantics. Flow
designs are implemented within IoT architectures. The union of flows for a given application can suggest a
sufficient, but likely inefficient, IoT architecture. Figure 2 above illustrates flow development and
operations in an IoT environment. Based on this basic description of flow engineering, the following
concepts can be addressed in IoT applications.

Flow Abstraction. Existing flows can be abstracted for analysis and evolution through a process of
stepwise abstraction that reverses the flow development process.

Flow Engineering for Uncertainty Factors. Uncertainty Factor engineering requires that flows
conform to Response-Based Semantics in correctly processing all possible responses (IRH) from invoked
flows and services they employ. This aspect of the design process deals with risk management and mission
survivability, as well as management and governance of IoT operations. Definition of standards for
Uncertainty Factor detection and responses can simplify and organize this aspect of design.

Flow Verification. Because flows are deterministic, traditional function-theoretic verification can be
employed, as defined in the following equations that enumerate equivalences between functional
specifications and their procedural refinements. (Linger, et al. 1979) The functional forms represent the
behavior signatures of the control structures. They can be obtained through function composition and case
analysis as described below (for control structure labeled P, operations on data labeled g and h, predicate
labeled p, and program function (specification) labeled f). These function equations are independent of
language syntax and program subject-matter, and define the mathematical starting point for automated
behavior computation. The behavior signature of a sequence control structure

P: g; h

can be given by

f = [P] = [g; h] = [h] o [g]

where the square brackets denote the behavior signature of the enclosed program and “o” denotes the
composition operator. That is, the program function of a sequence can be calculated by ordinary function
composition of its constituent parts. The behavior signature of an alternation control structure

P: if p then g else h endif

can be given by

f = [P] = [if p then g else h endif]
 = ([p] = true [g] | [p] = false [h])

where | is the “or” symbol. That is, the program function of an alternation is given by a case analysis of the
true and false branches. The behavior signature of an iteration control structure

P: while p do g enddo

can be expressed using function composition and case analysis in a recursive equation based on the
equivalence of an iteration control structure and an iteration-free control structure (an if then structure):

f = [P] = [while p do g enddo]
 = [if p then g; while p do g enddo endif]
 = [if p then g; f endif]

Flow designs incorporating Response-Based Semantics will include statements to invoke external flows and
check responses. These statements are specified by behavior functions that are extended to include lower-
level histories. In particular, a statement to “invoke flow f1 with stimulus s1” will require a behavior function
that appends S1 to ISH. A statement to “receive response R1 from flow F1” will require a behavior function
that sets local variable R1 to the corresponding element of IRH. The correctness relations described here
can be verified in team reviews, and also form the basis for automated analysis, as described below.

Computing IoT Flow Behavior

Recent advances in automated computation of software behavior (Pleszkoch et al. 2012, Prowell et al. 2012)
open opportunities for verification of IoT flow component functionality and security properties. Behavior
computation is based on the function-theoretic equations defined above. It operates at the level of deep

 Flow Semantics in Smart City IoT

© 2016 - Richard Linger and Alan Hevner ISCA 2016

functional semantics, not surface syntax, and is implemented through compositional methods that abstract
program functionality into equivalent specifications. These computed specifications can in turn be analyzed
for the presence of any malicious content, as well to validate required legitimate operations. The computed
behavior of a program can be expressed as a set of disjoint cases, each consisting of a predicate that triggers
it and a definition of how the case uses and changes the state of a system. Initial application of this
technology has been directed to detection and analysis of malware at the binary level in both cybersecurity
and software assurance contexts.

Behavior computation does not look for things in code or in executions, both of which are subject to
fundamental limitations. Rather, it computes the net effects of programs and analyzes those results for
behaviors of interest, whether legitimate or malicious. In the context of malware detection, it is easy to hide
malicious content at the syntactic level, but very difficult to hide at the semantic level.

Behavior computation technology can be applied to the architectures and languages employed in IoT
systems. It can support development and verification of component software, as well as integration and
composition of component behaviors in flows. In turn, governance and management of deployed IoT
systems can benefit from periodic behavior computation for operational flows to validate current
functionality and absence of malicious content. It is increasingly clear that IoT development, with its
massive numbers of components and interactions, will not be business as usual and traditional methods
and tools for system development may prove insufficient. Next-generation forms of computational
automation such as behavior computation will be required to leverage human capabilities for IoT system
engineering. In essence, development processes and automation must evolve to keep pace with the scale
and complexity of IoT systems for Smart City operations.

A Smart City Illustration

In order to briefly illustrate a few of these concepts, imagine a Smart City IoT system and the Smart Grid
(SG) application within it (Zanella et al. 2014). The SG itself is a complex system-of-systems, supporting
sensing, communication, analysis, and actuation within a mission-centric management and governance
structure. Thousands of software-defined components and connections are involved, from smart meters to
power stations, all heavily instrumented (the sensor aspect of IoT) and actuated (the control aspect of IoT),
participating in real-time, asynchronous network-spanning flows. Massive amounts of data are created,
aggregated, analyzed, and acted upon in closed-loop control patterns by humans and machines, often
through computation-intensive big data analytics.

In organizing this functionality, it is useful to group related flows that support particular operations into
what are termed flowsets. Figure 3 depicts an imagined high-level flowset grouping for specification and
refinement in an iterative design process, based on the NIST Smart Grid Interoperability Framework
(Fitzpatrick and Wollman 2010). Each box represents a flowset addressed to a particular mission function,
with example high-level flows, actually hierarchical flowsets in their own right, listed as illustrations of
functionality. Each flowset is in fact a complex system-of-systems of its own.

These flows invoke each other in real-time, protocol-based inter-communications across large-scale
networked systems, and invoke reach-back1 and supply chain flowsets at lower levels in virtually endless
interactions with economic and societal entities. At first thought, the complexity of such IoT systems may
seem overwhelming, however, deterministic flows implementing Response-Based Semantics and design for
Uncertainty Factors can help maintain intellectual control by localizing reasoning and isolating yet
providing required functionality.

As described above, flows can depend on other flows distributed across an IoT network in order to achieve
successful completion. Transitivity analysis can reveal such dependencies for analysis of survivability,
resiliency, and other quality attributes. Given a primary flow, the first step in transitivity analysis is to
determine what other flows must be invoked to complete its required functionality. In addition, every flow
can exhibit both desired and undesired outcomes as defined, say, by equivalence classes that cover all
possible responses. It is also possible that primary flows can depend on successful completion of flows not
directly invoked, but rather temporally separated while nevertheless producing required data or system

1 Reach-back is defined as the process of obtaining products, services, applications, forces, equipment, or material
from organizations that are not forward deployed.

 Flow Semantics in Smart City IoT

© 2016 - Richard Linger and Alan Hevner ISCA 2016

states to permit primary flows to proceed. Basically, the Smart City flowsets of Figure 3 are all
interdependent at some level.

Figure 3. IoT Smart Grid Flowset Illustration

Discussion and Future Research

Research in Flow Semantics is complementary to IoT architecture research, which currently focuses
primarily on structural properties. While structural aspects are important for IoT development, the
semantics of IoT operations, which are software-defined at virtually every level, are essential to developing
and governing these systems. We believe Flow Semantics can play an important role in a unified engineering
discipline for IoT systems, with substantial impact on their specification, development, verification,
operation, and survivability. The following observations summarize key aspects of Flow Semantics:

 Flows help organize and aggregate IoT functionality around mission objectives at all levels, from
systems down to sensors and controllers.

 Flows can be defined to be deterministic for localized reasoning and verification while nevertheless
embodying dependencies on other flows in a system.

 Flows can provide deterministic operations despite the underlying asynchronism of IoT systems.

 Flows can be designed to deal with Uncertainty Factors through implementation of Response-Based
Semantics for operational resiliency and survivability.

 Flows are scale-free, with the same principles and processes involved in high-level and low-level flow
development and operation.

 Flows are implementation-independent, and can serve as first-class concepts for IoT system
specification and development.

Future research on Flow Semantics will include case studies dealing with real-world problems in IoT system
development. Research in Flow Semantics automation will help drive adoption of this technology. Of
particular importance in this regard is extension of the science and technology of automated software
behavior computation (e.g. Linger et al. 2007) for development and verification of flowsets across IoT

ion
Bulk/Renewable

Generation

Flowsets:

Coal/Oil	Operations
Natural	Gas	Operations

Renewable	Operations

Local

Distribution

Flowsets:

Low	Voltage	
Operations

Substation	Operations

Local	Distribution

Power

Transmission

Flowsets:

High-Voltage	
Operations

Substation	

Operations

Power

Consumers

Flowsets:

Industrial	Customers
Business	Customers

Residential	Customers

Management	

&	Governance

Flowsets:

Data	Aggregation	&	Analysis
Generation	Control

Transmission		Control

Distribution	Control

Consumption	Control

Service

Providers

Flowsets:

Demand	Monitoring
Power	Generation

Environmental	Monitoring

Maintenance	and	Upgrade

Financial	Operations

Energy

Markets

Flowsets:

Capacity	Monitoring
Demand	Monitoring

Environmental	

Monitoring

Financial	Operations

Sensing	and	Actuating

Weather

Monitoring

Maintenance

Crews/Materials

Equipment

Suppliers

Generation

Feedstock

Financial

Markets

…

Reachback/

Supply	Chain
Flowsets

Flowsets:

Reading	and	Transmitting	Data	
Actuating	Devices

Transportation

Facilities

A
d
d
it
io
n
al
	R
ea
c
h
b
ac
k
/S
u
p
p
ly
	
C
h
a
in
	

Fl
o
w
se
ts

Education	and

Training

…

 Flow Semantics in Smart City IoT

© 2016 - Richard Linger and Alan Hevner ISCA 2016

architectures and languages. Further, we will extend the reach of IoT semantics to Quality Semantics and
Evolution Semantics and apply these new ideas to Smart City IoT applications.

Acknowledgements

It is a pleasure to acknowledge the contributions of Mark Pleszkoch and Matt Mullarkey to the ideas in this
paper.

References

ARM. 2013. Introduction to the Architectural Reference Model for the Internet of Things, downloaded
from http://www.iot-a.eu/arm .

Atzori, L., Iera, A., and Morabito, G. 2010. “The Internet of Things: A Survey,” Computer Networks (54),
pp. 2787-2805.

Cisco. 2014. “The Internet of Things Reference Model,” Cisco White Paper.
Da Silva, W., Tomas, G., Dias, K., Alvaro, A. Afonso, R., and Garcia, V. 2013. “Smart Cities Software

Architectures: A Survey,” Proceedings of the 28th ACM Symposium on Applied Computing, Portugal.
Fitzpatrick, G.J. and Wollman, D.A. 2010. NIST Interoperability Framework and Action Plans. IEEE

Power and Energy Society General Meeting, Minneapolis.
Gil-Castineira, F., Costa-Montenegro, E., Gonzalez-Castano, F., Lopez-Bravo, C., Ojala, T., and Bose, R.

2011. “Experiences inside the Ubiquitous Oulu Smart City,” IEEE Computer (44:6), pp. 48-55.
Hevner, A., Linger, R., Sobel, A., and Walton, G. 2002. “The Flow-Service-Quality Framework: Unified

Engineering for Large-Scale, Adaptive Systems,” Proceedings of the 35th Annual Hawaii
International Conference on System Science (HICSS35), Hawaii.

Hevner, A., Linger, R., Pleszkoch, M., Prowell, S., and Walton, G. 2009. “Flow-Service-Quality (FSQ)
Engineering: A Discipline for Developing Systems of Systems,” Chapter 2 in Systems Analysis and
Design: Techniques, Methodologies, Approaches, and Architectures, Edited by R. Chiang, K. Siau,
and B. Hardgrave, Advances in Management Information Systems Monograph Series, M.E. Sharpe,
Inc.

Linger, R., Mills, H., and Witt, B. 1979. Structured Programming: Theory and Practice. Reading, MA:
Addison Wesley.

Linger, R., Pleszkoch, M., Walton, G., and Hevner, A. 2002. “Flow-Service-Quality (FSQ) Engineering:
Foundations for Network System Analysis and Development,” Technical Note CMU/SEI-2002-TN-
019, Software Engineering Institute, Carnegie Mellon University.

Linger, R., Pleszkoch, M., Burns, L., Hevner, A., and Walton, G. 2007. “Next-Generation Software
Engineering: Function Extraction for Computation of Software Behavior,” Proceedings of the 40th
Annual Hawaii International Conference on System Sciences (HICSS40), Hawaii.

Pleszkoch, M., Linger, R., Prowell, S., Sayre, K., and Burns, L. 2012. “Automated Behavior Computation
for Software Analysis and Validation,” Proceedings of Hawaii International Conference on System
Sciences (HICSS-45).

Prowell, S., Pleszkoch, M., Sayre, K., and Linger, R. 2012. "Automated Vulnerability Detection for
Compiled Smart Grid Software," Proceedings of Innovative Smart Grid Technologies (ISGT), IEEE
PES, Washington, DC.

Stoy, J. 1977. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory, MIT Press.

Vlacheas, P., Giaffreda, R., Stavroulaki, V., Kelaidonis, D., Foteinos, V., Poulios, G., Demestichas, P., Somov,
A., Biswas, A., and Moessner, K. 2013. “Enabling Smart Cities though a Cognitive Management
Framework for the Internet of Things,” IEEE Communications Magazine (51:6), pp. 102-111.

Walton, G., Longstaff, T., and Linger, R. 2009. “Computational Evaluation of Software Security
Attributes,” Proceedings of the 42nd Hawaii International Conference on System Sciences (HICSS-
42), Hawaii.

Weber, R. 2013. “Internet of Things – Governance Quo Vadis?” Computer Law & Security Review (29), pp.
341-347.

Zanella, A., Bui, N., Castellani, A., Vangelista, L., and Zorzi, M. 2014. “Internet of Things for Smart Cities,”
IEEE Internet of Things Journal (1:1), pp. 22-32.

http://www.iot-a.eu/arm

